CAPEC-670: Software Development Tools Maliciously Altered
Attack Pattern ID: 670
Abstraction: Detailed
View customized information:
Description
An adversary with the ability to alter tools used in a development environment causes software to be developed with maliciously modified tools. Such tools include requirements management and database tools, software design tools, configuration management tools, compilers, system build tools, and software performance testing and load testing tools. The adversary then carries out malicious acts once the software is deployed including malware infection of other systems to support further compromises.
Likelihood Of Attack
Low
Typical Severity
High
Relationships
This table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
Nature
Type
ID
Name
ChildOf
Standard Attack Pattern - A standard level attack pattern in CAPEC is focused on a specific methodology or technique used in an attack. It is often seen as a singular piece of a fully executed attack. A standard attack pattern is meant to provide sufficient details to understand the specific technique and how it attempts to accomplish a desired goal. A standard level attack pattern is a specific type of a more abstract meta level attack pattern.
Standard Attack Pattern - A standard level attack pattern in CAPEC is focused on a specific methodology or technique used in an attack. It is often seen as a singular piece of a fully executed attack. A standard attack pattern is meant to provide sufficient details to understand the specific technique and how it attempts to accomplish a desired goal. A standard level attack pattern is a specific type of a more abstract meta level attack pattern.
An adversary would need to have access to a targeted developer’s development environment and in particular to tools used to design, create, test and manage software, where the adversary could ensure malicious code is included in software packages built through alteration or substitution of tools in the environment used in the development of software.
Skills Required
[Level: High]
Ability to leverage common delivery mechanisms (e.g., email attachments, removable media) to infiltrate a development environment to gain access to software development tools for the purpose of malware insertion into an existing tool or replacement of an existing tool with a maliciously altered copy.
Consequences
This table specifies different individual consequences associated with the attack pattern. The Scope identifies the security property that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in their attack. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a pattern will be used to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Integrity
Execute Unauthorized Commands
Access Control
Gain Privileges
Confidentiality
Modify Data
Read Data
Mitigations
Have a security concept of operations (CONOPS) for the development environment that includes: Maintaining strict security administration and configuration management of requirements management and database tools, software design tools, configuration management tools, compilers, system build tools, and software performance testing and load testing tools.
Avoid giving elevated privileges to developers.
Example Instances
An adversary with access to software build tools inside an Integrated Development Environment IDE alters a script used for downloading dependencies from a dependent code repository where the script has been changed to include malicious code implanted in the repository by the adversary.
Related Weaknesses
A Related Weakness relationship associates a weakness with this attack pattern. Each association implies a weakness that must exist for a given attack to be successful. If multiple weaknesses are associated with the attack pattern, then any of the weaknesses (but not necessarily all) may be present for the attack to be successful. Each related weakness is identified by a CWE identifier.
Supply Chain: CWE does not currently cover Supply Chain in the way it is presented by CAPEC. Therefore, no mapping between the two corpuses can be made at this time.
CWE leads to CAPEC: This entry highlights the rare case where a CAPEC creates an instance of a CWE, as opposed to the usual other way around. At this time, this field only includes mappings to weaknesses that cause the CAPEC, instead of CWEs that could arise due to the CAPEC.
Taxonomy Mappings
CAPEC mappings to ATT&CK techniques leverage an inheritance model to streamline and minimize direct CAPEC/ATT&CK mappings. Inheritance of a mapping is indicated by text stating that the parent CAPEC has relevant ATT&CK mappings. Note that the ATT&CK Enterprise Framework does not use an inheritance model as part of the mapping to CAPEC.