An adversary with access to an organization’s software update infrastructure inserts malware into the content of an outgoing update to fielded systems where a wide range of malicious effects are possible. With the same level of access, the adversary can alter a software update to perform specific malicious acts including granting the adversary control over the software’s normal functionality.
Likelihood Of Attack
Medium
Typical Severity
High
Relationships
This table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
Nature
Type
ID
Name
ChildOf
Meta Attack Pattern - A meta level attack pattern in CAPEC is a decidedly abstract characterization of a specific methodology or technique used in an attack. A meta attack pattern is often void of a specific technology or implementation and is meant to provide an understanding of a high level approach. A meta level attack pattern is a generalization of related group of standard level attack patterns. Meta level attack patterns are particularly useful for architecture and design level threat modeling exercises.
Detailed Attack Pattern - A detailed level attack pattern in CAPEC provides a low level of detail, typically leveraging a specific technique and targeting a specific technology, and expresses a complete execution flow. Detailed attack patterns are more specific than meta attack patterns and standard attack patterns and often require a specific protection mechanism to mitigate actual attacks. A detailed level attack pattern often will leverage a number of different standard level attack patterns chained together to accomplish a goal.
Detailed Attack Pattern - A detailed level attack pattern in CAPEC provides a low level of detail, typically leveraging a specific technique and targeting a specific technology, and expresses a complete execution flow. Detailed attack patterns are more specific than meta attack patterns and standard attack patterns and often require a specific protection mechanism to mitigate actual attacks. A detailed level attack pattern often will leverage a number of different standard level attack patterns chained together to accomplish a goal.
Identify software with frequent updates: The adversary must first identify a target software that has updates at least with some frequency, enough that there is am update infrastructure.
Experiment
Gain access to udpate infrastructure: The adversary must then gain access to the organization's software update infrastructure. This can either be done by gaining remote access from outside the organization, or by having a malicious actor inside the organization gain access. It is often easier if someone within the organization gains access.
Exploit
Alter the software update: Through access to the software update infrastructure, an adversary will alter the software update by injecting malware into the content of an outgoing update.
Prerequisites
An adversary would need to have penetrated an organization’s software update infrastructure including gaining access to components supporting the configuration management of software versions and updates related to the software maintenance of customer systems.
Skills Required
[Level: High]
Skills required include the ability to infiltrate the organization’s software update infrastructure either from the Internet or from within the organization, including subcontractors, and be able to change software being delivered to customer/user systems in an undetected manner.
Consequences
This table specifies different individual consequences associated with the attack pattern. The Scope identifies the security property that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in their attack. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a pattern will be used to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Access Control
Gain Privileges
Authorization
Execute Unauthorized Commands
Integrity
Modify Data
Confidentiality
Read Data
Mitigations
Have a Software Assurance Plan that includes maintaining strict configuration management control of source code, object code and software development, build and distribution tools; manual code reviews and static code analysis for developmental software; and tracking of all storage and movement of code.
Require elevated privileges for distribution of software and software updates.
Example Instances
A subcontractor to a software developer injects maliciously altered software updates into an automated update process that distributes to government and commercial customers software containing a hidden backdoor.
Related Weaknesses
A Related Weakness relationship associates a weakness with this attack pattern. Each association implies a weakness that must exist for a given attack to be successful. If multiple weaknesses are associated with the attack pattern, then any of the weaknesses (but not necessarily all) may be present for the attack to be successful. Each related weakness is identified by a CWE identifier.
Supply Chain: CWE does not currently cover Supply Chain in the way it is presented by CAPEC. Therefore, no mapping between the two corpuses can be made at this time.
CWE leads to CAPEC: This entry highlights the rare case where a CAPEC creates an instance of a CWE, as opposed to the usual other way around. At this time, this field only includes mappings to weaknesses that cause the CAPEC, instead of CWEs that could arise due to the CAPEC.
Taxonomy Mappings
CAPEC mappings to ATT&CK techniques leverage an inheritance model to streamline and minimize direct CAPEC/ATT&CK mappings. Inheritance of a mapping is indicated by text stating that the parent CAPEC has relevant ATT&CK mappings. Note that the ATT&CK Enterprise Framework does not use an inheritance model as part of the mapping to CAPEC.