An adversary exploits a weakness in authorization to gather system-specific data and sensitive information within a registry (e.g., Windows Registry, Mac plist). These contain information about the system configuration, software, operating system, and security. The adversary can leverage information gathered in order to carry out further attacks.
Likelihood Of Attack
Medium
Typical Severity
Medium
Relationships
This table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
Nature
Type
ID
Name
ChildOf
Standard Attack Pattern - A standard level attack pattern in CAPEC is focused on a specific methodology or technique used in an attack. It is often seen as a singular piece of a fully executed attack. A standard attack pattern is meant to provide sufficient details to understand the specific technique and how it attempts to accomplish a desired goal. A standard level attack pattern is a specific type of a more abstract meta level attack pattern.
Gain logical access to system: An adversary must first gain logical access to the system it wants to gather registry information from,
Techniques
Obtain user account credentials and access the system
Plant malware on the system that will give remote logical access to the adversary
Experiment
Determine if the permissions are correct: Once logical access is gained, an adversary will determine if they have the proper permissions, or are authorized, to view registry information. If they do not, they will need to escalate privileges on the system through other means
Peruse registry for information: Once an adversary has access to a registry, they will gather all system-specific data and sensitive information that they deem useful.
Exploit
Follow-up attack: Use any information or weaknesses found to carry out a follow-up attack
Prerequisites
The adversary must have obtained logical access to the system by some means (e.g., via obtained credentials or planting malware on the system).
The adversary must have capability to navigate the operating system to peruse the registry.
Skills Required
[Level: Low]
Once the adversary has logical access (which can potentially require high knowledge and skill level), the adversary needs only the capability and facility to navigate the system through the OS graphical user interface or the command line.
Resources Required
None: No specialized resources are required to execute this type of attack.
Consequences
This table specifies different individual consequences associated with the attack pattern. The Scope identifies the security property that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in their attack. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a pattern will be used to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Confidentiality
Read Data
Mitigations
Employ a robust and layered defensive posture in order to prevent unauthorized users on your system.
Employ robust identification and audit/blocking via using an allowlist of applications on your system. Unnecessary applications, utilities, and configurations will have a presence in the system registry that can be leveraged by an adversary through this attack pattern.
Related Weaknesses
A Related Weakness relationship associates a weakness with this attack pattern. Each association implies a weakness that must exist for a given attack to be successful. If multiple weaknesses are associated with the attack pattern, then any of the weaknesses (but not necessarily all) may be present for the attack to be successful. Each related weakness is identified by a CWE identifier.
CAPEC mappings to ATT&CK techniques leverage an inheritance model to streamline and minimize direct CAPEC/ATT&CK mappings. Inheritance of a mapping is indicated by text stating that the parent CAPEC has relevant ATT&CK mappings. Note that the ATT&CK Enterprise Framework does not use an inheritance model as part of the mapping to CAPEC.
Relevant to the ATT&CK taxonomy mapping (also see parent)