An attacker with access to download and update system software sends a maliciously altered BIOS to the victim or victim supplier/integrator, which when installed allows for future exploitation.
Likelihood Of Attack
Low
Typical Severity
High
Relationships
This table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
Nature
Type
ID
Name
ChildOf
Standard Attack Pattern - A standard level attack pattern in CAPEC is focused on a specific methodology or technique used in an attack. It is often seen as a singular piece of a fully executed attack. A standard attack pattern is meant to provide sufficient details to understand the specific technique and how it attempts to accomplish a desired goal. A standard level attack pattern is a specific type of a more abstract meta level attack pattern.
Advanced knowledge about the installed target system design.
Advanced knowledge about the download and update installation processes.
Access to the download and update system(s) used to deliver BIOS images.
Skills Required
[Level: High]
Able to develop a malicious BIOS image with the original functionality as a normal BIOS image, but with added functionality that allows for later compromise and/or disruption.
Mitigations
Deploy strong code integrity policies to allow only authorized apps to run.
Use endpoint detection and response solutions that can automaticalkly detect and remediate suspicious activities.
Maintain a highly secure build and update infrastructure by immediately applying security patches for OS and software, implementing mandatory integrity controls to ensure only trusted tools run, and requiring multi-factor authentication for admins.
Require SSL for update channels and implement certificate transparency based verification.
Sign update packages and BIOS patches.
Use hardware security modules/trusted platform modules to verify authenticity using hardware-based cryptography.
Example Instances
An attacker compromises the download and update portion of a manufacturer's web presence, and develops a malicious BIOS that in addition to the normal functionality will also at a specific time of day disable the remote access subsystem's security checks. The malicious BIOS is put in place on the manufacturer's website, the victim location is sent an official-looking email informing the victim of the availability of a new BIOS with bug fixes and enhanced performance capabilities to entice the victim to install the new BIOS quickly. The malicious BIOS is downloaded and installed on the victim's system, which allows for additional compromise by the attacker.
Related Weaknesses
A Related Weakness relationship associates a weakness with this attack pattern. Each association implies a weakness that must exist for a given attack to be successful. If multiple weaknesses are associated with the attack pattern, then any of the weaknesses (but not necessarily all) may be present for the attack to be successful. Each related weakness is identified by a CWE identifier.
Supply Chain: CWE does not currently cover Supply Chain in the way it is presented by CAPEC. Therefore, no mapping between the two corpuses can be made at this time.
Taxonomy Mappings
CAPEC mappings to ATT&CK techniques leverage an inheritance model to streamline and minimize direct CAPEC/ATT&CK mappings. Inheritance of a mapping is indicated by text stating that the parent CAPEC has relevant ATT&CK mappings. Note that the ATT&CK Enterprise Framework does not use an inheritance model as part of the mapping to CAPEC.