This pattern of attack leverages standard requests to learn the exact time associated with a target system. An adversary may be able to use the timestamp returned from the target to attack time-based security algorithms, such as random number generators, or time-based authentication mechanisms.
Typical Severity
Low
Relationships
This table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
Nature
Type
ID
Name
ChildOf
Standard Attack Pattern - A standard level attack pattern in CAPEC is focused on a specific methodology or technique used in an attack. It is often seen as a singular piece of a fully executed attack. A standard attack pattern is meant to provide sufficient details to understand the specific technique and how it attempts to accomplish a desired goal. A standard level attack pattern is a specific type of a more abstract meta level attack pattern.
The ability to send a timestamp request to a remote target and receive a response.
Resources Required
Scanners or utilities that provide the ability to send custom ICMP queries.
Consequences
This table specifies different individual consequences associated with the attack pattern. The Scope identifies the security property that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in their attack. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a pattern will be used to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Confidentiality
Other
Example Instances
An adversary sends an ICMP type 13 Timestamp Request to determine the time as recorded by a remote target. Timestamp Replies, ICMP Type 14, usually return a value in Greenwich Mean Time. An adversary can attempt to use an ICMP Timestamp requests to 'ping' a remote system to see if is alive. Additionally, because these types of messages are rare they are easily spotted by intrusion detection systems, many ICMP scanning tools support IP spoofing to help conceal the origin of the actual request among a storm of similar ICMP messages. It is a common practice for border firewalls and gateways to be configured to block ingress ICMP type 13 and egress ICMP type 14 messages.
An adversary may gather the system time or time zone from a local or remote system. This information may be gathered in a number of ways, such as with Net on Windows by performing net time \\hostname to gather the system time on a remote system. The victim's time zone may also be inferred from the current system time or gathered by using w32tm /tz. The information could be useful for performing other techniques, such as executing a file with a Scheduled Task, or to discover locality information based on time zone to assist in victim targeting
Related Weaknesses
A Related Weakness relationship associates a weakness with this attack pattern. Each association implies a weakness that must exist for a given attack to be successful. If multiple weaknesses are associated with the attack pattern, then any of the weaknesses (but not necessarily all) may be present for the attack to be successful. Each related weakness is identified by a CWE identifier.
Exposure of Sensitive Information to an Unauthorized Actor
Taxonomy Mappings
CAPEC mappings to ATT&CK techniques leverage an inheritance model to streamline and minimize direct CAPEC/ATT&CK mappings. Inheritance of a mapping is indicated by text stating that the parent CAPEC has relevant ATT&CK mappings. Note that the ATT&CK Enterprise Framework does not use an inheritance model as part of the mapping to CAPEC.
Relevant to the ATT&CK taxonomy mapping (also see parent)
[REF-33] Stuart McClure, Joel Scambray
and George Kurtz. "Hacking Exposed: Network Security Secrets & Solutions". Chapter 2: Scanning, pp. 44-51. 6th Edition. McGraw Hill. 2009.
[REF-123] J. Postel. "RFC792 - Internet Control Messaging Protocol". Defense Advanced Research Projects Agency (DARPA). 1981-09.
<http://www.faqs.org/rfcs/rfc792.html>.