
March 1, 2007 1

Software Confidence. Achieved.

An Introduction to Attack Patterns as
a Software Assurance Knowledge

Resource

www.cigital.com
info@cigital.com
+1.703.404.9293

Sean Barnum
Managing Consultant
sbarnum@cigital.com

OMG Software Assurance Workshop
2007

2March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

About Cigital
Software Quality Management consultants
Founded in 1992 to address software security and software quality
Recognized experts in software security and software quality

Widely published in books, white papers, and magazines
Home of Cigital Labs: cutting edge software quality research
laboratory

3March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Evolution of Software Assurance

Defend the Perimeter
and Patch when

Problems are Found

Improve Assurance
through Proactive

Defense

Hardened Defenses
through Understanding

the Attacker’s
Perspective

4March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Attack Patterns

Goal: Representing the attacker’s perspective in a formalized
and constructive way to provide expert-level understanding and
guidance to software development personnel of all levels as to
how their software is likely to be attacked, and thereby equip
them to build more secure software

Intended audience
Software development community

Provide knowledge to assist in building more secure software

Security researchers
Provide communication and knowledge capture mechanism for those
researching exploits and other software security issues

Security professionals/practitioners
Provide knowledge to guide security assessment and auditing

5March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Why Should You Care About Attack
Patterns?

6March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

The Nature of Risk

Software Assurance is an issue of RISK

Defenses are constructed and strengthened to
mitigate the risks of exploit of the system

Exploring the Attacker’s perspective helps to
identify and qualify the nature of risk to the
software

7March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

The Long-established Principal of “Know Your Enemy”

“One who knows the enemy and knows
himself will not be endangered in a
hundred engagements. One who does
not know the enemy but knows himself
will sometimes be victorious. Sometimes
meet with defeat. One who knows neither
the enemy nor himself will invariably be
defeated in every engagement.”

Chapter 3: “Planning the Attack”
The Art of War, Sun Tzu

8March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

The Long-established Principal of “Know Your Enemy”

Software Assurance Translation

“One who knows the enemy and knows himself will not be
endangered in a hundred engagements.
Strong defensive preparedness combined with understanding
the attacker’s perspective yields high assurance

One who does not know the enemy but knows himself will
sometimes be victorious. Sometimes meet with defeat.
A strong defense alone will protect you from known threats but
will leave you vulnerable to others

One who knows neither the enemy nor himself will invariably
be defeated in every engagement.”
A lack of both a proactive defense and an understanding of the
attacker’s perspective leaves you completely vulnerable

Chapter 3: “Planning the Attack”
The Art of War, Sun Tzu

9March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

The Importance of Knowing Your Enemy
An appropriate defense can only be established if you
know how it will be attacked

The challenge of the defender
The attacker’s advantage (defender must stop all
attacks; attacker need only succeed with one)
Prioritization of functionality over security
The knowledge gap between attacker’s and those
attempting to build secure software

Remember!
Software Assurance must assume motivated attackers and not simply
passive quality issues
Attackers are very creative, actively collaborate and have powerful
tools at their disposal

10March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Resources for the Attacker’s Perspective

Practices and knowledge representing the
attacker’s perspective

Attack Surface Modeling
Threat Analysis
Misuse/Abuse Cases
Security Testing

Security Feature Testing
Risk-based Security Testing
Penetration Testing
Red Teaming

Attack Patterns

11March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Brief Introduction to the Common
Weakness Enumeration (CWE)

12March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

What Does Defense Mean?

Minimizing vulnerabilities in software
Vulnerabilities are weaknesses in software that are
exploitable to an attacker
Weaknesses typically result from coding errors,
design flaws, misconfigurations or design decisions
that are invalid for the given context
Once they reach the state of vulnerabilities,
weaknesses are considerably riskier and more
expensive to fix
Therefore, the goal of defense in software
development is to minimize weaknesses in software
as early in the lifecycle as possible

13March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

How Do We Capture & Convey Weaknesses?

There have been dozens of attempts to solve
this problem in academia, government and
commercial industry but they have all been
disjoint

Common Weakness Enumeration (CWE) offers
a solution for today and the future

http://cwe.mitre.org

14March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Goal of the Common Weakness Enumeration
Initiative

To improve the quality of software with respect to
known security issues within source code

define a unified measurable set of
weaknesses

enable more effective discussion,
description, selection and use of software
security tools and services that can find
these weaknesses

15March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

SEI CERT
Secure
Coding
Standards
Effort

SEI CERT
Secure
Coding
Standards
Effort

OWASP
&

WASC

DHS/NIST
SAMATE

Tool
Assessment Reference

Dataset

Center for
Assured SW

Reference
Dataset

SwA SIG

DHS’s SwA
CBK

Previously Published
Vulnerability Taxonomy

Work
Secure

Software’s
John

Viega’s
CLASP and
Taxonomy

Cigital’s
Gary

McGraw’s
Work and
Taxonomy

Microsoft’s
Mike

Howard’s
Work and
Taxonomy

OWASP’s
Checklist

and
Taxonomy

CVE-based
PLOVER Work

Fortify’s
Brian

Chess’s
Work and
Taxonomy

CWE
Compatibility

List of CWEs
that a

Tool finds

Dictionary

Common Weakness
Enumeration (CWE)

--

- call & count the same
● enable metrics

Klocwork’s
Checklist

and
Taxonomy

Ounce
Lab’s

Taxonomy

Gramma
Tech’s

Checklist
and

Taxonomy

DHS’s BSI
Web site

Kestrel Technology

NSA/CTC

Watchfire

Stanford

MIT LL

SEI
Purdue

GMU
IBM

Oracle

JMU

UC Berkeley

KDM Analytics
Unisys

UMD NCSU

Core Security
Coverity

Cenzic

SPI Dynamics

Parasoft

VERACODE

Security Institute

CVE and NVD
using CWEs

Building
Consensus
About A Common
Enumeration

16March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

CWE Current Status
Quality

“Kitchen Sink” – In a good way
Many taxonomies, products, perspectives
Varying levels of abstraction

Directory traversal, XSS variants
Mixes attack, behavior, feature, and flaw

Predominant in current research vocabulary, especially web application
security
Complex behaviors don’t have simple terms
New/rare weaknesses don’t have terms

Quantity
Draft 5 - over 600 entries
Currently integrating content from top 15 – 20 tool vendors and
security weaknesses “knowledge holders” under NDA

Accessibility
Website is live with:

Historical materials, papers, alphabetical full enumeration, taxonomy
HTML tree, CWE in XML, ability to URL reference individual CWEs, etc
http://cwe.mitre.org

17March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Attack Patterns Background

18March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

What are Attack Patterns?

An attack pattern is a blueprint for an exploit. It
is a description of a common approach
attackers take to attack software. They are
developed by reasoning over large sets of
software exploits and attacks.

Attack patterns help identify and qualify the risk
that a given exploit will occur in a software
system.

19March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Related Concepts

Attack/Threat trees
Attack patterns are paths through the tree
from leaf to root

Fault trees
Focused on reliability, safety and related
characteristics

Security Patterns
Consist of general solutions to recurring
security problems (e.g. account lockout to
prevent brute force attacks)

20March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Background

Design Patterns
Christopher Alexander and then the Gang of Four
(Gamma, et al)

Attack Pattern concept emerges ~2001 among
industry thought leaders

Attack Patterns become “real” with Exploiting
Software [Hoglund & McGraw]

Applying pattern concept to methods of exploit

Attack Patterns become actionable with
Common Attack Pattern Enumeration and
Classification (CAPEC)

21March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Knowledge: 48 Attack Patterns
Make the Client Invisible
Target Programs That Write to Privileged OS Resources
Use a User-Supplied Configuration File to Run Commands
That Elevate Privilege
Make Use of Configuration File Search Paths
Direct Access to Executable Files
Embedding Scripts within Scripts
Leverage Executable Code in Nonexecutable Files
Argument Injection
Command Delimiters
Multiple Parsers and Double Escapes
User-Supplied Variable Passed to File System Calls
Postfix NULL Terminator
Postfix, Null Terminate, and Backslash
Relative Path Traversal
Client-Controlled Environment Variables
User-Supplied Global Variables (DEBUG=1, PHP Globals,
and So Forth)
Session ID, Resource ID, and Blind Trust
Analog In-Band Switching Signals (aka “Blue Boxing”)
Attack Pattern Fragment: Manipulating Terminal Devices
Simple Script Injection
Embedding Script in Nonscript Elements
XSS in HTTP Headers
HTTP Query Strings

User-Controlled Filename
Passing Local Filenames to Functions That Expect a URL
Meta-characters in E-mail Header
File System Function Injection, Content Based
Client-side Injection, Buffer Overflow
Cause Web Server Misclassification
Alternate Encoding the Leading Ghost Characters
Using Slashes in Alternate Encoding
Using Escaped Slashes in Alternate Encoding
Unicode Encoding
UTF-8 Encoding
URL Encoding
Alternative IP Addresses
Slashes and URL Encoding Combined
Web Logs
Overflow Binary Resource File
Overflow Variables and Tags
Overflow Symbolic Links
MIME Conversion
HTTP Cookies
Filter Failure through Buffer Overflow
Buffer Overflow with Environment Variables
Buffer Overflow in an API Call
Buffer Overflow in Local Command-Line Utilities
Parameter Expansion
String Format Overflow in syslog()

22March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Attack Pattern 1:
Make the client invisible

Remove the client from the
communications loop and
talk directly to the server

Leverage incorrect trust
model (never trust the
client)

Example: hacking browsers
that lie

23March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Attack Pattern 2:
Command delimiters

Use off-nominal
characters to string
together multiple
commands

Example: shell
command injection with
delimiters

<input type=hidden name=filebase
value="bleh; [command]”>

cat data_log_; rm -rf /; cat
temp.dat

exec(“cat data_log_ .dat”);

; rm –rf /; cat temp

24March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Attack Pattern Generation

25March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Who Authors Attack Patterns?

Most developers typically lack the experiential
depth to perform attack abstraction analysis

More suitable to a narrower membership of
security analysts and researchers

Conclusion:
They are created by a small group of very
experienced people
They are used by a very large group of
experienced and inexperienced software
development personnel

26March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Come From

Input source – Exploits
Not many good official sources for Exploits – Lots of shady
sources
POC exploits sometimes available with vulnerability reports
Results from malware analysis community are often for limited
distribution

Input source – Attacks
Primarily come from operations and incident response
communities
Some come from researchers

Analysis Approach
Batch vs Continual
Formal vs Informal

27March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Exploit Analysis Process

Analyze the exploit
Reverse engineer it
Perform forensic analysis
Analyze any available patches by vendors of the target software

Determine whether the exploit is an instantiation of any
existing attack patterns

If so, add new exploit reference to existing attack pattern and stop there
If not, determine if this represents a new common attack approach

If so, continue with attack pattern generation
If not, archive exploit analysis performed and stop there

Identify targeted vulnerability or weakness
If vulnerability, find related CVE, OVAL, weakness and context descriptions

Define contextual prerequisites for attack
In what technical context (OS, platform, language, etc.) and under what
conditions is this exploit possible?

28March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Exploit Analysis Process (continued)

Determine the method of attack
Malicious data entry?
Maliciously crafted file?
Protocol corruption?

Determine required attacker’s skill
Script kiddie?
Experienced hacker?

Determine required attacker’s resources
Simple manual execution?
Distributed bot army?
Well-funded organization?
Tools?

Determine motivation of attacker
Gain access to secure assets (information, CPU cycles, etc.)?
Denial of capability?
Vandalism or pure destructive intent?

29March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Adorning the Attack Pattern

It is often useful to adorn the attack pattern with
useful reference information

Source exploits
Targeted vulnerabilities including CVE & OVAL
references
Targeted weaknesses including CWE references
Relevant security requirements
Relevant design patterns
Related attack patterns

30March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Evaluating and Verifying Attack Patterns

Validate with a 3rd party review
Verify that no existing attack pattern covers the
exploits

If existing attack pattern found, determine if new one is needed
or if existing one should be modified

Validate that source exploits are actually
instantiations of new attack pattern

If not, should attack pattern be modified

Ensure attack pattern is not overly generic
Ensure attack pattern is not overly specific
Ensure attack pattern is accessible to target
audiences

31March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Formally Representing Attack
Patterns

32March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Drivers for Formal Representation

Consistency between patterns & authors
Ensure adequate completeness and quality
Correlate and integrate with other relevant
knowledge collections
Ability for reader to focus on aspects they
care about
Ability for variations in content presentation
Ability to search and subsect a set of patterns
for given contexts

33March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

A Proposed Attack Pattern Schema
Primary Schema Elements

Identifying Information
Attack Pattern ID
Attack Pattern Name

Describing Information
Description
Related Weaknesses
Related Vulnerabilities
Method of Attack
Examples-Instances
References

Prescribing Information
Solutions and Mitigations

Scoping and Delimiting Information
Typical Severity
Typical Likelihood of Exploit
Attack Prerequisites
Attacker Skill or Knowledge Required
Resources Required
Attack Motivation-Consequences
Context Description

34March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

A Proposed Attack Pattern Schema

Supporting Schema Elements
Describing Information

Injection Vector
Payload
Activation Zone
Payload Activation Impact

Diagnosing Information
Probing Techniques
Indicators-Warnings of Attack
Obfuscation Techniques

Enhancing Information
Related Attack Patterns
Relevant Security Requirements
Relevant Design Patterns
Relevant Security Patterns
Related Security Principles
Related Guidelines

35March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Attack Patterns Example (part 1)
 Name HTTP Response Splitting
 Attack_Pattern_ID
 Severity High

 Description

HTTP Response Splitting causes a vulnerable web server to respond to a maliciously crafted request by
sending an HTTP response stream such that it gets interpreted as two separate responses instead of a single
one. This is possible when user-controlled input is used unvalidated as part of the response headers. An
attacker can have the victim interpret the injected header as being a response to a second dummy request,
thereby causing the crafted contents be displayed and possibly cached. To achieve HTTP Response Splitting
on a vulnerable web server, the attacker:
1. Identifies the user-controllable input that causes arbitrary HTTP header injection.
2. Crafts a malicious input consisting of data to terminate the original response and start a second response
with headers controlled by the attacker.
3. Causes the victim to send two requests to the server. The first request consists of maliciously crafted input
to be used as part of HTTP response headers and the second is a dummy request so that the victim interprets
the split response as belonging to the second request.

 Attack_Prerequisites

User-controlled input used as part of HTTP header

Ability of attacker to inject custom strings in HTTP header

Insufficient input validation in application to check for input sanity before using it as part of response header
 Likelihood of Exploit Medium

 Methods of Attack
Injection

Protocol Manipulation

 Examples-Instances

In the PHP 5 session extension mechanism, a user-supplied session ID is sent back to the user within the Set-
Cookie HTTP header. Since the contents of the user-supplied session ID are not validated, it is possible to
inject arbitrary HTTP headers into the response body. This immediately enables HTTP Response Splitting by
simply terminating the HTTP response header from within the session ID used in the Set-Cookie directive.

CVE-2006-0207

Attacker_Skill_or_Knowledge_Required

High - The attacker needs to have a solid understanding of the HTTP protocol and HTTP headers and must be
able to craft and inject requests to elicit the split responses.

 Resources_Required None

 Probing_Techniques

With available source code, the attacker can see whether user input is validated or not before being used as
part of output. This can also be achieved with static code analysis tools

If source code is not available, the attacker can try injecting a CR-LF sequence (usually encoded as %0d%0a
in the input) and use a proxy such as Paros to observe the response. If the resulting injection causes an invalid
request, the web server may also indicate the protocol error.

 Indicators-Warnings_of_Attack The only indicators are multiple responses to a single request in the web logs. However, this is difficult to
notice in the absence of an application filter proxy or a log analyzer. There are no indicators for the client

 Solutions_and_Mitigations To avoid HTTP Response Splitting, the application must not rely on user-controllable input to form part of its

36March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Attack Patterns Example (part 2)

Modification Source

Chiradeep B Chhaya2007-01-09First DraftSubmission Source

G. Hoglund and G. McGraw. Exploiting Software: How to Break Code. Addison-Wesley, February
2004.
CWE - HTTP Response Splitting
CWE - Injection

References

Related_Coding_Rules

Never trust user-supplied input.Related_Guidelines

Reluctance to TrustRelated Security Principles

All client-supplied input must be validated through filtering and all output must be properly
escaped.Relevant_Security_Requirements

CWE113 “HTTP Response Splitting” - Targeted
CWE74 “Injection” - SecondaryRelated Weaknesses

The impact of payload activation is that two distinct HTTP responses are issued to the target, which
interprets the first as response to a supposedly valid request and the second, which causes the actual
attack, to be a response to a second dummy request issued by the attacker.

Payload_Activation_Impact

API calls in the application that set output response headers.Activation_Zone

Encoded HTTP header and data separated by appropriate CR-LF sequences. The injected data must
consist of legitimate and well-formed HTTP headers as well as required script to be included as
HTML body.

Payload

User-controllable input that forms part of output HTTP response headersInjection_Vector

HTTP Response Splitting attacks take place where the server script embeds user-controllable data in
HTTP response headers. This typically happens when the script embeds such data in the redirection
URL of a redirection response (HTTP status code 3xx), or when the script embeds usuch data in a
cookie value or name when the response sets a cookie. In the first case, the redirection URL is part
of the Location HTTP response header, and in the cookie setting, the cookie name/value pair is part
of the Set-Cookie HTTP response header.

Context Description

Run Arbitrary Code
Privilege EscalationAttack Motivation-Consequences

To avoid HTTP Response Splitting, the application must not rely on user-controllable input to form
part of its output response stream. Specifically, response splitting occurs due to injection of CR-LF
sequences and additional headers. All data arriving from the user and being used as part of HTTP
response headers must be subjected to strict validation that performs simple character-based as well
as semantic filtering to strip it of malicious character sequences and headers.

Solutions_and_Mitigations

37March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Leveraging Attack Patterns

38March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Are Leveraged

By representing the attacker’s perspective,
attack patterns offer valuable knowledge, either
proscriptive by example or prescriptive by
advice, at every stage of the software
development lifecycle (SDLC)

Depending on the level of detail describing the
attack pattern and the level of abstraction of the
attack, any given attack pattern can have
varying levels of usefulness at different stages
of the SDLC

39March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Selecting Appropriate Attack Patterns for the Context

The first step in leveraging attack patterns
anywhere in the SDLC is identifying which
patterns are appropriate for the business,
technical and security context as well as the
development activity being undertaken

Identify the set of attack patterns that pose the
most significant risk

40March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Leveraging Attack Patterns Across the SDLC

Security Policy
Requirements
Architecture & Design
Implementation
Test
Operations

41March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Are Leveraged – Security Policy

Attack Patterns can be an invaluable resource
in guiding the selection and definition of
relevant security policies and standards

Generating security policies and standards
Development perspective

Using relevant attack patterns to identify appropriate
security policies and standards to obviate or mitigate the
attacks

Security Assurance perspective
Using relevant attack patterns to identify appropriate
guidelines and context for verifying compliance with
appropriate security policies

42March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Security Policy Example (simplistic)

Relevant Attack Patterns
Password Brute Forcing

Try Common (default) Usernames and
Passwords
Dictionary-based password attacks

Resulting Security Policy
All systems must incorporate an account
lockout mechanism to block account access
for a system-specific period of time after a
system-specific number of failed login
attempts

43March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Leveraging Attack Patterns Across the SDLC

Security Policy
Requirements
Architecture & Design
Implementation
Test
Operations

44March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Are Leveraged – Requirements

Attack Patterns can be an invaluable resource
in assisting to define the system’s behavior
to prevent or react to a specific type of
likely attack

Defining requirements
Development perspective

Using relevant attack patterns to identify appropriate
positive security feature requirements to describe
functionality that will be resistant and resilient to the
specified attack

Security Assurance perspective
Using relevant attack patterns to identify appropriate
negative security requirements (misuse/abuse
cases) to specify the software’s behavior when faced
with the specified attack

45March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Resource: Security Feature Requirements

Objective
Explicitly describe the presence and expected
behavior of security-related functionality and
features of the software

Role of Attack Patterns
Content contained in each attack pattern, such
as Attack Prerequisites and Related
Weaknesses can help identify missing security
functionality that could enable such an attack.
This functionality can then be explicitly included
The Relevant Security Requirements element of
some attack patterns can explicitly list
recommended security requirements to mitigate
that class of attack

46March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Resource: Security Requirements Example
(simplistic)

Relevant Attack Pattern
Session Fixation

Identified Security Requirements
Regenerate session identifiers upon each new request.
This ensures that fixated session identifiers are rendered
obsolete.
Regenerate a session identifier every time a user enters an
authenticated session and destroy the identifier when the
user logs out of an authenticated session.
Set appropriate expiry times on cookies that contain
session identifiers. This helps limit the window of
opportunity for an attacker to use the identifier.
Do not use session identifiers as part of URLs or hidden
form fields. It becomes easy for an attacker to trick a user
into a fixated session when session identifiers are easily
accessible.

47March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Resource: Use/Abuse/Misuse Cases

Use Cases – “organized collections of scenarios based on the
sequences of actions taken by normal users” – just stories about
how people use the system
Abuse Cases – a specialized form of Use Cases that focus on the
exceptions and threats caused by hostile agents.
Misuse Cases – a specialized form of a Use Case that focuses on
the behavior of a system when it is used in an unexpected way by
other than hostile agents.

Simply – Use cases look at the system from the normal users perspective;
Abuse cases look at the system from the attackers’ perspective; misuse
cases look at the system from the perspective of a naieve user.

An abuse case or misuse case “threatens” a use case
A use case “mitigates” an abuse case or misuse case.

48March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Resource: Misuse/Abuse Cases
Objective

Capture and personify attacking behaviors against the system as
requirements for attack resistance

Key Factors
Use cases formalize normative behavior (and assume correct usage)
Describing non-normative behavior is a good idea

Prepare for abnormal behavior (attack)
Misuse or abuse cases do this
Uncover exceptional cases

Leverage the fact that designers know more about their system than
potential attackers do
Document explicitly what the software will do in the face of illegitimate use
Form basis for security testing of attack resistance
Consist of typical use case fields
Relationships with Use Cases
Efficacy Targets

Resistance
Recovery

Role of Attack Patterns
Misuse and Abuse Cases can be directly derived from attack pattern
descriptions

49March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Use Case: left to right
Misuse and abuse case: right to left

Drive the car

Lock the car

Lock the steering wheel

Steal the car

Jimmy the Lock

Driver Car
Thief

Includes

Includes

In
cl

u d
es

Threatens

Threatens

Mitig
ates

Mitigates

“actor” “actor”

Loses Key Misuser
Threatens

Resource: Misuse/Abuse Cases Example
(simplistic)

50March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Leveraging Attack Patterns Across the SDLC

Security Policy
Requirements
Architecture & Design
Implementation
Test
Operations

51March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Are Leveraged – Architecture and
Design

Attack Patterns can be an invaluable resource
in assisting a software architecture team to
create secure designs

Architecture and design
Development perspective

Using relevant attack patterns as negative scenarios for
a proposed architecture and design to deal with

Security Assurance perspective
Using relevant attack patterns to put flesh to threat
modeling as part of architectural risk analysis
Using relevant attack patterns to identify appropriate
recommended or non-recommended design patterns

52March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Architecture and Design Development Example
(simplistic)

Relevant Attack Patterns
Exploiting Trust in Client

Man-in-the-Middle
Create Malicious Client
Client-Server Protocol Manipulation

Resulting Architecture & Design Decision
Place all user authentication and input validation on
the server leaving a minimal user interface on the
client

53March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

A&D Practice: Architectural Risk Analysis
Designers should not do this
Build a one page white board
design model (like that)
Use hypothesis testing to
categorize risks

Threat modeling/Attack
patterns

Rank risks
Tie to business context
Suggest fixes
Repeat

54March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

A&D Practice: Architectural Risk Analysis

Architectural Risk Analysis

Inputs OutputsActivities

Perform Attack
Resistance

Analysis

Perform
Ambiguity
Analysis

Perform
Underlying
Framework
Weakness
Analysis

Map
Applicable Attack

Patterns

Identify General
Flaws

Non-Compliance
Show where
guidelines are not
followed

Show Risks and
Drivers in

Architecture

Ponder Design
Implications

Unify
Understanding

Uncover Ambiguity
Identify
Downstream
Difficulty
(Sufficiency
Analysis)
Unravel
Convolutions
Uncover Poor
Traceability

Find & Analyze
Flaws in

COTS
Frameworks
Network Topology
Platform

Identify Services
Used By

Application

Documents

Security
Analyst

Generate Separate
Architecture

Diagram
Documents

Documents
Map Weaknesses

to Assumptions
Made by

Application

Attack Patterns

Show Viability of
Known Attacks

Against Analogous
Technologies

Architectural Risk
Assessment

Report

Software
Flaws

Documents

Attack
Patterns

Exploit Graphs

Secure Design
Literature

Documents

Requirements Architectural
Documents

Regulatory
Requirements/

Industry
Standards

Build One Page
Architecture Overview

External
Resources

Mailing Lists
Product
Documentation

Start by building a one
page overview of your
system
Then apply the
following three step
process

Weakness
analysis
Ambiguity analysis
Attack resistance
analysis

55March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

A&D Practice: Attack Surface Modeling

Objective
Identify in somewhat objective terms how
vulnerable a software system is to attack
(characterize defensive posture)

Key Factors
Entry/Exit Points
Amount of Code Running
Trust Boundaries
Assets
Vulnerabilities
Barriers/Challenges to Attack (difficulty to exploit)

56March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

A&D Practice: Threat Analysis

Objective
To identify and understand the active threats that
exist for a software system that induce
assurance risk

Key Factors
Actor Identification
Motivation
Capability
Access Vector against Attack Surface

57March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Threat/Attack Modeling Diagrams

Diagram system
List Threats (agents of maligned intent)
Show attack vectors

58March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Leveraging Attack Patterns Across the SDLC

Security Policy
Requirements
Architecture & Design
Implementation
Test
Operations

59March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Are Leveraged – Implementation

Attack Patterns can be an invaluable resource
in guiding secure code implementation
practices through prioritizing and avoiding
specific weaknesses in the code

Implementation
Development perspective

Using relevant attack patterns as a mechanism to identify
relevant weaknesses to avoid

Security Assurance perspective
Using relevant attack patterns as a mechanism to identify
relevant weaknesses to scan for (using software
security tools where possible) and confirm their
absence

60March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Implementation Practice: Secure Coding
Description

Writing software code in a manner that fulfills all
expectations of behavior (what it should do and what it
should not do) and minimizes the presence of common
weaknesses which may lead to vulnerabilities

Understand common coding errors that lead to weaknesses
For a given implementation context, identify which
weaknesses bring the highest risk
Provide training to developers in the understanding of
common coding errors (especially high-risk errors) and the
recommended secure coding practices to mitigate them

Role of Attack Patterns
Relevant attack patterns help identify the high-risk
weaknesses for a given implementation context

61March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Implementation Practice: Secure Coding Example
(simplistic)

Relevant Attack Pattern
HTTP Cookies

Relevant High-Priority Weaknesses Identified
through Attack Pattern

CWE-302 - Authentication Bypass by Assumed-Immutable Data
CWE-113 – HTTP Response Splitting
CWE-539 – Information Leakage Through Persistent Cookies
CWE-315 – Plaintext Storage in Cookies
CWE-384 – Session Fixation
CWE-565 – Use of Cookies
CWE-472 – Web Parameter Tampering
CWE-20 – Input Validation

62March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Implementation Practice: Secure Code Review
Description

Performing analysis of software code to verify
the absence of common weaknesses which may
lead to vulnerabilities

Identify and prioritize weaknesses to be targeted
Review code to gain assurance that specific weaknesses do
not exist

Most effective and efficient when done with tools
Mitigate and/or remediate identified issues
Provide demonstrable evidence of what activities were
performed, what was found, what was fixed and what risk
was accepted

Role of Attack Patterns
Relevant attack patterns help identify the high-risk
weaknesses they target

63March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Leveraging Attack Patterns Across the SDLC

Security Policy
Requirements
Architecture & Design
Implementation
Test
Operations

64March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Are Leveraged – Test

Attack Patterns can be an invaluable resource
in guiding software security testing in a
practical and realistic context

Test
Development perspective

Using relevant attack patterns to identify necessary test
cases for confirming the absence of relevant
weaknesses as well as giving a practical context for
testing security features

Security Assurance perspective
Using relevant attack patterns to define appropriate roles
and approaches for red team testing

65March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Test Practice: Security Feature Testing

Description
Performing traditional functional and non-
functional testing of the security features
of the software to assure their presence
and correct behavior

E.g. testing an account lockout feature
after multiple failed login attempts

Role of Attack Patterns
Give a realistic bounding context for
definition of test cases

66March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Test Practice: Risk-based Security Testing

Description
Testing focused on reducing the risk profile of
the software. In this case, testing to confirm the
absence of targeted high-risk weaknesses and
the correct behavior of the software in the face of
non-normative user behavior

Role of Attack Patterns
Identify high-priority test cases to confirm the
absence of high-risk weaknesses targeted by
relevant attack patterns
Form the templates for creation of Abuse Case
and Misuse Case-driven test cases

67March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Test Practice: Penetration Testing (blackbox)

Description
Testing the attack resistance of software by
emulating an attacker executing a checklist of
simple attack methods without any prior
knowledge of the target infrastructure

Typically focuses on simply penetrating the
outer barrier of the software and does not
involve chaining of attacks

Role of Attack Patterns
Specific attack pattern steps can assist in
identification of penetration methods to add to
checklist

68March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Test Practice: Red Teaming

Description
Active testing of system attack resistance through
emulation of a specific attacker profile
Team of testers creatively attack the system as an
identified attacker/threat might
Red Teaming is a more involved and creative form of
penetration testing

Penetration testing typically focuses on simply breaching the
barrier security of the software where red teaming probes the
full scope of the software as an attacker would
Red teaming emulates the creativity of the attacker where
penetration testing is often a rote execution through a
checklist of common attacks

Role of Attack Patterns
Relevant attack patterns can help identify appropriate
attack profiles for the Red Team to assume including
typical methods

69March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Leveraging Attack Patterns Across the SDLC

Security Policy
Requirements
Architecture & Design
Implementation
Test
Operations

70March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Are Leveraged – Operations

Attack Patterns can be an invaluable resource
in securely operating a deployed system

Operations
Operating perspective

Using relevant attack patterns to identify appropriate
secure operations configurations
Using relevant attack patterns to classify and
understand impact of observed attacks

Security Assurance perspective
Operational knowledge of security issues can be
leveraged to feed the attack pattern generation process
and yield better attack pattern coverage and thereby
better future software

71March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Operations Practice: Improve Process with Real-
world Lessons Learned

Description
Pursuing continuous improvement by informing
early lifecycle processes of lessons learned in late
lifecycle processes in order to avoid such problems
in the future

Capture real-world problems faced by operational software
Abstract this detailed information into knowledge that
developers can understand
Leverage it to improve development processes and avoid
such problems in the future

Role of Attack Patterns
Provide the mechanism for capturing the abstracted
knowledge and making it actionable in the SDLC

72March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Common Attack Pattern
Enumeration and Classification

(CAPEC)

73March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

What is CAPEC?

Effort targeted at:
Standardizing the capture and description of
attack patterns
Collecting known attack patterns into an
integrated enumeration that can be consistently
and effectively leveraged by the community
Classifying attack patterns such that users can
easily identify the subset of the entire
enumeration that is appropriate for their context

Funded by the DHS NCSD
Led by Cigital

74March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Current CAPEC Status

Extensive research performed and underway
to identify and evaluate potential resources
for creating attack patterns
Schema definition completed (discussed
earlier)
In process of fleshing out and authoring
~100 patterns
Draft attack taxonomy completed from
analysis of existing taxonomies and
identified patterns

75March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Draft Attack Taxonomy

Organized by mechanism of attack
Abuse of Functionality
Spoofing
Probabilistic Techniques
Exploitation of Authentication
Resource Depletion
Exploitation of Privilege/Trust
Injection
Data Structure Attacks
Data Leakage Attacks
Resource Manipulation
Protocol Manipulation
Time & State Attacks

76March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Draft Attack Taxonomy: Spoofing subtree example

Spoofing
Content Spoofing

Make Use of Configuration File Search Paths
Fake the Source of Data
Checksum Spoofing
Spoofing of UDDI/ebXML Messages

Identity Spoofing (Impersonation)
Principal Spoofing
Man-in-the-Middle

Utilize Rest’s trust in the system resource to register man in the middle
Create Malicious Client
Client-Server Protocol Manipulation

Reflection Attack in an Authentication Protocol
XML Routing Detour Attacks
External Entity Attack
Phishing

Spear Phishing
Mobile Phishing (aka MobPhishing)

Pharming

77March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Draft Attack Taxonomy (snippet)
 Session Fixation
 Session Riding (aka Cross-site Request Forgery)

Resource
Depletion
 Denial of Service through Resource Depletion
 Resource Depletion through Flooding

Resource Depletion through
Allocation

 Resource Depletion through Leak
 XML Parser Attack

Exploitation of Privilege/Trust
 Privilege Escalation
 Direct Access to Executable Files
 Use a User-Supplied Configuration File to Run Commands That Elevate Privilege
 Hijacking a privileged thread of execution
 Implementing a callback to system routine (old AWT Queue)
 Catching exception throw/signal from privileged block
 Subverting code-signing/identity facilities to gain their privilege
 Calling signed code from another language within a sandbox that allows this
 Lifting signing key and signing malicious code from a production environment
 Using URL/codebase / G.A.C. (code source) to convince sandbox of privilege
 Target Programs That Write to Privileged OS Resources

Exploiting Trust in
Client

 Man-in-the-Middle
 Create Malicious Client
 Client-Server Protocol Manipulation
 Reflection Attack in an Authentication Protocol
 Lifting Sensitive Data from the Client
 Lifting data embedded in client distributions (thick or thin)

Lifting credential(s)/key material embedded in client distributions (thick or
thin)

 Lifting cached, sensitive data embedded in client distributions (thick or thin)

 Removing Important Functionality from the Client

Removing/short-circuiting 'guard
logic'

Removing/short-circuiting 'Purse' logic: removing/mutating 'cash'
"decrements"

 Removal of filters: Input filters, output filters, data masking

Subversion of authorization checks: cache filtering, programmatic security,
etc.

 Exploitation of Authorization
 Mapping a path to and accessing functionality not properly constrained by authorization framework/ACLs

Injecting Control Plane content through the Data Plane (AKA Injection)
 Analog In-Band Switching Signals (aka “Blue Boxing”)
 Parameter Injection
 Argument Injection
 User-Supplied Variable Passed to File System Calls
 Resource Injection

78March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Adorning Metadata

Purpose
Reconnaissance
Penetration
Exploitation

CIA Impact
Confidentiality Impact
Integrity Impact
Availability Impact

Technical Context
Paradigm
Framework
Platform

79March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Fitting CAPEC into the Bigger Picture

CAPEC is most valuable when its content is
aligned with related software assurance
knowledge collections

Yields gestalt where the whole is greater
than the sum of the parts

The DHS/DOD Software Assurance
Knowledge Architecture

Common Weakness Enumeration (CWE)
Common Malware Enumeration (CME)
Security Principles
Security Guidelines
Etc.

80March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

The Big Picture

81March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

What to Expect Going Forward from CAPEC

Draft attack pattern enumeration should be
available for review in early to mid-March

Initial release of CAPEC including
deployment to publicly available website
should late March to early April

82March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Community Involvement and Future Growth

DHS/DOD Software Assurance programs

OMG Software Assurance SIG

Contribution/Involvement Opportunities
Community review & feedback
Contributing new APs

83March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Summary
Understanding and representing the attacker’s
perspective is critical to building secure software

Attack patterns are a powerful resource for capturing
and communicating this perspective

Attack patterns have direct value across the entire
SDLC

CAPEC is one ongoing effort to standardize, collect
and share common attack patterns

There are opportunities for you to get involved and
contribute to realizing the value of attack patterns for
the broader software community

84March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Never Underestimate Your Adversary

“The individualist without strategy who takes
opponents lightly will inevitably become the
captive of others.”

Chapter 9: “Maneuvering Armies”
The Art of War, Sun Tzu

85March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Questions?

Further questions or want to get involved?
sbarnum@cigital.com

